Blind Deconvolution in Microscopy

Minh-Hai NGUYEN, Florian SARRON, Paul ESCANDE, Pierre WEISS

IRIT/CBI, Université de Toulouse, France.

minh-hai.nguyen@univ-tlse3.fr

https://mh-nguyen712.github.io/

Introduction

Blind Deconvolution — recover a sharp image x and the point-spread-function (PSF) h from a measurement y observed with the degradation \mathcal{D} :

$$y = \mathcal{D}(h \star x). \tag{1}$$

We propose a learning method for PSF identification in Blind Deconvolution for Microscopy, building upon the advancements of [1].

Fresnel Diffraction-limited Blurs

Parameterization. The PSF $h: \mathbb{R}^2 \to \mathbb{R}$ is parameterized by θ as:

$$h(\theta) = \left| \mathcal{F} \left(\exp \left(-i2\pi \phi_{\theta} \right) \right) \right|^{2}, \tag{2}$$

where \mathcal{F} is the Fourier transform. The pupil function $\phi_{\theta}: \mathbb{R}^2 \to \mathbb{R}$ is decomposed as:

$$\phi_{\theta} = \sum_{k=1}^{K} \theta_k z_k, \quad z_k : \text{ Zernike polynomials.}$$

Implemented in deepinv [2]

Physical parameters.

– Cut-off frequency: $f_{\text{fc}} \in [0.125, 0.25]$ (pupil size, Shannon is at 0.25).

- Max amplitude of $\theta_k \sim \mathcal{U}\left[-\theta_{\text{max}}, \theta_{\text{max}}\right]$ (PSF complexity).

Image Formation Model

We consider the following degradation:

$$y = S_s Q_q \left(\mathcal{P}_{\gamma} \left(h(\theta) \star x \right) + \epsilon_{\sigma} \right), \tag{3}$$

where $\epsilon_{\sigma} \sim \mathcal{N}(0, \sigma^2 \mathrm{Id})$: white Gaussian noise

 \mathcal{P}_{γ} : Poisson noise with gain γ

 Q_q : quantization at q-bits

 S_s : salt-and-pepper noise with prob. s

Identification Neural Network – $N_w(y, f_{\rm fc}, \theta_{\rm max})$

Architecture: estimate the PSF at the center of a patch, **conditioned** to the cutoff frequency and the Zernike amplitude.

Synthesize random measurements y following (3): $(\sigma, \gamma, \theta, f_{\rm fc}, \theta_{\rm max})$ are random following μ , q = 16-bits and $s = 10^{-5}$.

Supervised training identification neural network.

$$\min_{w} \mathbb{E}_{\mu, \boldsymbol{x}} \left[\| \hat{\boldsymbol{h}} - h(\boldsymbol{\theta}) \|_{1} \right] + \lambda \mathbb{E}_{\mu, \boldsymbol{x}} \left[\| \hat{\boldsymbol{h}} \star \boldsymbol{x} - \boldsymbol{y} \|_{1} \right], \tag{4}$$

where $\hat{\boldsymbol{h}} = N_w \left(\boldsymbol{y}, \boldsymbol{f}_{\mathrm{fc}}, \boldsymbol{\theta}_{\mathrm{max}} \right)$ and \boldsymbol{y} follows (3).

Numerical Results

On synthetized data

PNSR when the $f_{\rm fc}$ and $\theta_{\rm max}$ are given			
	${\bf ImageNet}$	Flickr2K	Histopathology
\hat{h}	52.11 ± 4.63	49.75 ± 4.79	48.67 ± 4.21
$\hat{h} \star x$	37.50 ± 4.92	37.02 ± 5.22	34.50 ± 4.63

Real data – Fluorescence TIRF Microscope

With deformable mirror, we can control and estimate the theoretical PSF.

Slight performance drop when $f_{\rm fc}$ and $\theta_{\rm max}$ are un-known.

Images of microtubules and Estimated PSF grids. Credit to Sylvain Cantaloube (CBI)

Conclusions and Next steps

- Promissing results on PSF identification, both on synthetic data and real data
- Implementation in Napari (coming soon)
- Consider space-varying blurs (coming soon)
- Training reconstruction network: based on identification network
- Extend to 3D microscopy

References

- [1] Valentin Debarnot and Pierre Weiss. Deep-blur: Blind identification and deblurring with convolutional neural networks. *Biological Imaging*, 4:e13, 2024.
- [2] DeepInverse. Deepinverse: a pytorch library for imaging with deep learning, 2024.