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Imaging Systems in Microscopy
Basic principles
» Goal: see tiny structures by magnifying the image using lenses
> Image quality depends on the optical system, including resolution and contrast

> Resolution is limited by diffraction—light waves spread when passing through a
lens
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Figure: Objective and Microscope (source: https://zeiss-campus.magnet.fsu.edu/)
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Blurring: optical and physical causes
» Diffraction: even a perfect lens cannot focus light to a single point
» Aberrations: lens imperfections
» Out-of-focus: light from different depths overlaps, causing blur
» Motion Blur: sample movement

» Modeled by convolution with a point-spread-function
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Noise
> Photon noise (shot noise)
> Readout noise (camera noise)
> Impulse noise: dead pixels

— Modeled by Poisson-Gaussian and salt-and-pepper noise



Example of Microscopy Images

Figure: Source: Microscope database, CBI



Example of Microscopy Images

Figure: Credit: Sylvain Cantaloube (Microscopy Platform, CBI)



Microscopy point-spread-function in a nutshell
Point-spread-function (PSF)

Describes the response of a focused optical imaging system to a point source.
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Diffraction barrier
The highest achievable point-to-point resolution that can be obtained with an optical
microscope is governed by a fundamental set of physical laws

Figure: Resolution limit imposed by wave nature of light (source: https://www.microscopyu.com)



Diffraction-limited blurs

Parameterization
The PSF h: R2 — R is parameterized by § € RX as:

h(0) = | F (exp (—i2mdp))|*, (1)

where F is the Fourier transform. The phase transition function ¢4 : R? — R is
decomposed as:

K
P9 = Z Orzr, =2k : Zernike polynomials (orthogonal on the unit disk).
k=1

Physical parameters

» Cut-off frequency: define the support (in frequency domain) of the Zernike
polynomials — f¢. € [0.125,0.25] (to respect Shannon).
> Max amplitude of 0 ~ U [—Omax, Omax] — define the complexity of the PSF.



Elementary PSF

Example of Diffraction PSF
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Example of Diffraction PSF

Random PSF




Blind deconvolution—Problem formulation

Modeling the image acquision
The acquisition model reads

y = SsQq (Py (h(0) * x) + €5)
where e, ~ N(0,0%1d) : white Gaussian noise
P~ : Poisson noise with gain ~
Qq : quantization at g-bits

S, : salt-and-pepper noise with prob. s

Blind deconvolution
Estimating h and x from y.

PSF Identification
Estimating h from y.

2



Identification Network

Architecture: auto-encoder like architecture

Concat

= 60 million parameters.




Identification Network

Architecture: auto-encoder like architecture

Concat

= 60 million parameters.

Supervised training

Simulate random parameters (Omax, Y, 0, ftc) following u, synthesize y following (2)
and solve: . .
minE, o [k = h(O)1] + AEpe [k +z —ylh], (3)

where h = Nuw (Y, fics Omax)-



Pseudo-code of the training procedure

Algorithm Training the PSF identification neural network

Require: pu, A, batch size B, number of iterations N
1: Initialize the neural networ Ny,
2: for i<~ 1 to N do
3: Sample a random mini-batch x
4 Sample random parameters (Omax, v, 0, ftc) following
5: Synthesize y = SsQq (P~ (h(0) * ) + €5)
6: Compute the loss (3)
7 Update the network N, by gradient descent
8. end for




Numerical results

On synthetic data

ImageNet Flickr2K Histopathology

h 52.11+4.63 49.75+4.79 48.67 £4.21
hxx 37.504+4.92 37.02+5.22 34.50 £4.63

Table: PNSR when the fi. and 6y,ax are given
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Slight performance drop when fi. and Omax are unknown.



Numerical results

Example on ImageNet
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Numerical results

Real data: Fluorescence TIRF Microscopy
With deformable mirror, we can control and estimate the theoretical PSF.

Images of microtubules and Estimated PSF grids
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Thank you for your attention!
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