Training identification network for blind deconvolution in microscopy

PhD Seminar - IRIT

Minh Hai NGUYEN, PhD student at IRIT/CBI Joint work with Florian SARRON, Paul ESCANDE, Pierre WEISS

Contents

Imaging Systems in Microscopy

Blind deconvolution problem

PSF Identification Neural Network

Numerical results

Imaging Systems in Microscopy

Basic principles

- ► Goal: see tiny structures by magnifying the image using lenses
- Image quality depends on the optical system, including resolution and contrast
- Resolution is limited by diffraction—light waves spread when passing through a lens

Figure: Objective and Microscope (source: https://zeiss-campus.magnet.fsu.edu/)

Imaging Systems in Microscopy

Basic principles

- ► Goal: see tiny structures by magnifying the image using lenses
- ▶ Image quality depends on the optical system, including resolution and contrast
- Resolution is limited by diffraction—light waves spread when passing through a lens

Blurring: optical and physical causes

- Diffraction: even a perfect lens cannot focus light to a single point
- ► Aberrations: lens imperfections
- Out-of-focus: light from different depths overlaps, causing blur
- ► Motion Blur: sample movement
- → Modeled by convolution with a point-spread-function

Imaging Systems in Microscopy

Basic principles

- ► Goal: see tiny structures by magnifying the image using lenses
- Image quality depends on the optical system, including resolution and contrast
- Resolution is limited by diffraction—light waves spread when passing through a lens

Blurring: optical and physical causes

- Diffraction: even a perfect lens cannot focus light to a single point
- ► Aberrations: lens imperfections
- Out-of-focus: light from different depths overlaps, causing blur
- ▶ Motion Blur: sample movement
- ightarrow Modeled by convolution with a point-spread-function

Noise

- ► Photon noise (shot noise)
- Readout noise (camera noise)
- Impulse noise: dead pixels
- → Modeled by Poisson-Gaussian and salt-and-pepper noise

Example of Microscopy Images

Figure: Source: Microscope database, CBI

Example of Microscopy Images

Figure: Credit: Sylvain Cantaloube (Microscopy Platform, CBI)

Microscopy point-spread-function in a nutshell

Point-spread-function (PSF)

Describes the response of a focused optical imaging system to a point source.

Microscopy point-spread-function in a nutshell

Point-spread-function (PSF)

Describes the response of a focused optical imaging system to a point source.

Diffraction barrier

The highest achievable point-to-point resolution that can be obtained with an optical microscope is governed by a fundamental set of physical laws

Figure: Resolution limit imposed by wave nature of light (source: https://www.microscopyu.com)

Diffraction-limited blurs

Parameterization

The PSF $h:\mathbb{R}^2 \to \mathbb{R}$ is parameterized by $\theta \in \mathbb{R}^K$ as:

$$h(\theta) = |\mathcal{F}(\exp(-i2\pi\phi_{\theta}))|^2, \tag{1}$$

where $\mathcal F$ is the Fourier transform. The phase transition function $\phi_\theta:\mathbb R^2\to\mathbb R$ is decomposed as:

$$\phi_{ heta} = \sum_{k=1}^K heta_k z_k, \quad z_k$$
 : Zernike polynomials (orthogonal on the unit disk).

Physical parameters

- ▶ Cut-off frequency: define the support (in frequency domain) of the Zernike polynomials $f_{fc} \in [0.125, 0.25]$ (to respect Shannon).
- ▶ Max amplitude of $\theta_k \sim \mathcal{U}\left[-\theta_{\max}, \theta_{\max}\right]$ define the complexity of the PSF.

Example of Diffraction PSF

Elementary PSF

Example of Diffraction PSF

Random PSF

Blind deconvolution-Problem formulation

Modeling the image acquision

The acquisition model reads

$$y = S_s Q_q \left(\mathcal{P}_{\gamma} \left(h(\theta) \star x \right) + \epsilon_{\sigma} \right), \tag{2}$$

where $\ \epsilon_{\sigma} \sim \mathcal{N}(0,\sigma^2 \mathrm{Id})$: white Gaussian noise

 \mathcal{P}_{γ} : Poisson noise with gain γ

 Q_q : quantization at q-bits

 S_s : salt-and-pepper noise with prob. s

Blind deconvolution

Estimating h and x from y.

PSF Identification

Estimating h from y.

Identification Network

Architecture: auto-encoder like architecture

 ≈ 60 million parameters.

Identification Network

Architecture: auto-encoder like architecture

pprox 60 million parameters.

Supervised training

Simulate random parameters $(\theta_{\rm max}, \gamma, \sigma, f_{\rm fc})$ following μ , synthesize y following (2) and solve:

$$\min_{w} \mathbb{E}_{\mu, \boldsymbol{x}} \left[\|\hat{\boldsymbol{h}} - h(\boldsymbol{\theta})\|_{1} \right] + \lambda \mathbb{E}_{\mu, \boldsymbol{x}} \left[\|\hat{\boldsymbol{h}} \star \boldsymbol{x} - \boldsymbol{y}\|_{1} \right], \tag{3}$$

where $\hat{\boldsymbol{h}} = N_w \left(\boldsymbol{y}, \boldsymbol{f}_{\mathrm{fc}}, \boldsymbol{\theta}_{\mathrm{max}} \right)$.

Pseudo-code of the training procedure

Algorithm Training the PSF identification neural network

Require: μ , λ , batch size B, number of iterations N

- 1: Initialize the neural networ N_w
- 2: for $i \leftarrow 1$ to N do
- 3: Sample a random mini-batch x
- 4: Sample random parameters $(heta_{
 m max}, \gamma, \sigma, f_{
 m fc})$ following μ
- 5: Synthesize $y = S_s Q_q \left(\mathcal{P}_{\gamma} \left(h(\theta) \star x \right) + \epsilon_{\sigma} \right)$
- 6: Compute the loss (3)
- 7: Update the network N_w by gradient descent
- 8: end for

On synthetic data

	ImageNet	Flickr2K	Histopathology
\hat{h}	52.11 ± 4.63	49.75 ± 4.79	48.67 ± 4.21
$\hat{h} \star x$	37.50 ± 4.92	37.02 ± 5.22	34.50 ± 4.63

Table: PNSR when the f_{fc} and θ_{max} are given

On synthetic data

	ImageNet	Flickr2K	Histopathology
\hat{h}	52.11 ± 4.63	49.75 ± 4.79	48.67 ± 4.21
$\hat{h} \star x$	37.50 ± 4.92	37.02 ± 5.22	34.50 ± 4.63

Table: PNSR when the f_{fc} and θ_{max} are given

	ImageNet	Flickr2K	Histopathology
\hat{h}	47.14 ± 5.16	46.21 ± 4.40	46.06 ± 4.19
$\hat{h} \star x$	35.64 ± 5.56	36.77 ± 5.34	33.71 ± 4.38

Table: PNSR when the f_{fc} and θ_{max} are **fixed** to the mean

On synthetic data

	ImageNet	Flickr2K	Histopathology
\hat{h}	52.11 ± 4.63	49.75 ± 4.79	48.67 ± 4.21
$\hat{h} \star x$	37.50 ± 4.92	37.02 ± 5.22	34.50 ± 4.63

Table: PNSR when the f_{fc} and θ_{max} are given

	ImageNet	Flickr2K	Histopathology
\hat{h}	47.14 ± 5.16	46.21 ± 4.40	46.06 ± 4.19
$\hat{h} \star x$	35.64 ± 5.56	36.77 ± 5.34	33.71 ± 4.38

Table: PNSR when the f_{fc} and θ_{max} are **fixed** to the mean

Slight performance drop when $f_{\rm fc}$ and $\theta_{\rm max}$ are unknown.

Example on ImageNet

Real data: Fluorescence TIRF Microscopy

With deformable mirror, we can control and estimate the theoretical PSF.

Images of microtubules and Estimated PSF grids

Real data: Fluorescence TIRF Microscopy

With deformable mirror, we can control and estimate the theoretical PSF.

Images of microtubules and Estimated PSF grids

Thank you for your attention!