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Imaging Systems in Microscopy

Basic principles

▶ Goal: see tiny structures by magnifying the image using lenses

▶ Image quality depends on the optical system, including resolution and contrast

▶ Resolution is limited by diffraction—light waves spread when passing through a
lens

Figure: Objective and Microscope (source: https://zeiss-campus.magnet.fsu.edu/)

Blurring: optical and physical causes

▶ Diffraction: even a perfect lens cannot focus light to a single point

▶ Aberrations: lens imperfections

▶ Out-of-focus: light from different depths overlaps, causing blur

▶ Motion Blur: sample movement

→ Modeled by convolution with a point-spread-function

Noise
▶ Photon noise (shot noise)

▶ Readout noise (camera noise)

▶ Impulse noise: dead pixels

→ Modeled by Poisson-Gaussian and salt-and-pepper noise
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Example of Microscopy Images

Figure: Source: Microscope database, CBI



Example of Microscopy Images

Figure: Credit: Sylvain Cantaloube (Microscopy Platform, CBI)



Microscopy point-spread-function in a nutshell

Point-spread-function (PSF)
Describes the response of a focused optical imaging system to a point source.

Diffraction barrier
The highest achievable point-to-point resolution that can be obtained with an optical
microscope is governed by a fundamental set of physical laws

Figure: Resolution limit imposed by wave nature of light (source: https://www.microscopyu.com)
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Diffraction-limited blurs

Parameterization
The PSF h : R2 → R is parameterized by θ ∈ RK as:

h(θ) = |F (exp (−i2πϕθ))|2 , (1)

where F is the Fourier transform. The phase transition function ϕθ : R2 → R is
decomposed as:

ϕθ =
K∑

k=1

θkzk, zk : Zernike polynomials (orthogonal on the unit disk).

Physical parameters

▶ Cut-off frequency: define the support (in frequency domain) of the Zernike
polynomials – ffc ∈ [0.125, 0.25] (to respect Shannon).

▶ Max amplitude of θk ∼ U [−θmax, θmax] – define the complexity of the PSF.



Example of Diffraction PSF

Elementary PSF

Defocus 45◦ Pri. Astigmatism 0◦ Pri. Astigmatism y-Coma

x-Coma y-Trefoil x-Trefoil Pri. Spherical



Example of Diffraction PSF

Random PSF



Blind deconvolution–Problem formulation

Modeling the image acquision
The acquisition model reads

y = SsQq (Pγ (h(θ) ⋆ x) + ϵσ) , (2)

where ϵσ ∼ N (0, σ2Id) : white Gaussian noise

Pγ : Poisson noise with gain γ

Qq : quantization at q-bits

Ss : salt-and-pepper noise with prob. s

Blind deconvolution
Estimating h and x from y.

PSF Identification
Estimating h from y.



Identification Network

Architecture: auto-encoder like architecture

ffc

θmax

Feed-forward

Feed-forward

Conv Concat

Encoder Fusion Decoder

≈ 60 million parameters.

Supervised training
Simulate random parameters (θmax, γ, σ, ffc) following µ, synthesize y following (2)
and solve:

min
w

Eµ,x

[
∥ĥ− h(θ)∥1

]
+ λEµ,x

[
∥ĥ ⋆ x− y∥1

]
, (3)

where ĥ = Nw (y,f fc,θmax).
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Pseudo-code of the training procedure

Algorithm Training the PSF identification neural network

Require: µ, λ, batch size B, number of iterations N
1: Initialize the neural networ Nw

2: for i← 1 to N do
3: Sample a random mini-batch x
4: Sample random parameters (θmax, γ, σ, ffc) following µ
5: Synthesize y = SsQq (Pγ (h(θ) ⋆ x) + ϵσ)
6: Compute the loss (3)
7: Update the network Nw by gradient descent
8: end for



Numerical results

On synthetic data

ImageNet Flickr2K Histopathology

ĥ 52.11± 4.63 49.75± 4.79 48.67± 4.21

ĥ ⋆ x 37.50± 4.92 37.02± 5.22 34.50± 4.63

Table: PNSR when the ffc and θmax are given

ImageNet Flickr2K Histopathology

ĥ 47.14± 5.16 46.21± 4.40 46.06± 4.19

ĥ ⋆ x 35.64± 5.56 36.77± 5.34 33.71± 4.38

Table: PNSR when the ffc and θmax are fixed to the mean

Slight performance drop when ffc and θmax are unknown.
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ĥ ⋆ x 35.64± 5.56 36.77± 5.34 33.71± 4.38

Table: PNSR when the ffc and θmax are fixed to the mean

Slight performance drop when ffc and θmax are unknown.



Numerical results

On synthetic data

ImageNet Flickr2K Histopathology
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Numerical results

Example on ImageNet
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Numerical results

Real data: Fluorescence TIRF Microscopy
With deformable mirror, we can control and estimate the theoretical PSF.

Images of microtubules and Estimated PSF grids
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Thank you for your attention!
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